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The θ projection method and small creep strain

interpolations in a commercial Titanium alloy
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The paper describes the early and final uniaxial creep behaviour of a Titanium alloy used
for manufacturing intermediate power compressor disks and blades. Tests were conducted
at the operating temperature (773 K) for such components and for rupture lives up to
3600 hours. Creep curves were fitted using either the conventional 4� model or the recently
developed 6θ equation. Parameters allowing the interpolation of times to small strains
were produced and their accuracy checked against experimental values using distributions
found to be most supported by the data. At strains above 0.75% both methods yielded zero
mean interpolation errors. At strains above 0.27% and below 0.75% the 4� equation
produced systematic errors in interpolation but the 6θ function gave errors which were not
statistically different from zero. For strains below 0.27% both techniques produced
systematic interpolation errors but the 6θ interpolations were always significantly better
than their 4� counterparts. Both the 6θ and 4� techniques produced systematic errors
when predicting the failure time using interpolated rupture strains. Unlike the 4� function,
the 6θ equation produced unbiased predictions of the minimum creep rate and so
produced failure time interpolations from the Monkman–Grant relation that were
indistinguishable from zero. C© 2001 Kluwer Academic Publishers

1. Introduction
The constant drive to produce lighter aero engines lead,
in the late 1980’s and early 1990’s, to the development
of some new Titanium alloys, such as IMI 834 and Ti
6.2.4.6. Unlike Ti-4Sn-4Al-4Mo-0.5Si (IMI 551) [1]
which must operate at temperatures below 723 K, both
of these new alloys are capable of operating in the 773 K
to 900 K temperature range [2]. As a result these alloys
are now being used in the manufacture of intermedi-
ate to high power (as opposed to the traditional low
power role of Titanium) compressor disks and blades
for modern aero engines.

However, at these higher operating temperatures con-
ditions are ideal for creep at significant rates and so it
is very important to have a detailed understanding of
the creep behaviour of the Ti 6.2.4.6 alloy. In particular,
compressor disks and blades are made to close dimen-
sional tolerances and so must operate without to much
distortion. Strains in excess of 0.5% over the creeping
range of an aero engine blade can cause the surrounding
casing to be spoiled. Designers therefore need to know
the creep properties of the Ti 6.2.4.6 alloy at small creep
strains but these are difficult to measure by conventional
creep curves since it is as this time that creep machines
are at their most unstable.

One measure of early creep properties is the time
to a given small strain, such at 0.1%. It will normally
be required to know such a time at the operating con-
ditions (stress and temperature) experienced by the

high power Titanium disks and blades so that inter-
polation (and possibly extrapolation) techniques will
be required. The θ projection method, in its more usual
form [3] has proved to be very useful for the interpola-
tion of properties at large creep strains but unfortunately
is much less reliable at small strains [4, 5]. This paper
investigates the effectiveness of using a recent modifi-
cation of the θ projection method [6] to obtain inter-
polative predictions of times to various low strains in a
Ti 6.2.4.6 alloy.

To achieve such an aim this paper will first de-
scribe the test material and the test matrix used which
tally’s with the operating conditions experienced by a
Ti 6.2.4.6 alloy aero engine disk/blade. The accuracy
of the traditional and modified theta projection tech-
niques (to be called 4� and 6θ respectively from now
on) will then be analysed through the application of
some statistical techniques to the observed errors in
interpolation. General practical implications and con-
clusions will then be discussed.

2. Experimental procedures
The material used in this investigation is Titanium
alloy Ti-6.2.4.6 prepared as an ingot forged in the
β-phase at approximately 1238 K (the β transus is ap-
proximately 1223 K). The chemical composition of
this material (in wt %) was determined as 5.79 Al,
3.94 Zr, 1.99 Sn, 6.03 Mo, 0.06 Fe, 0.02 C, 0.1 O,
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T ABL E I Creep test matrix for the Titanium alloy Ti-6.2.4.6

τ tF (ks) ε̇M (s−1) εF (%) t0.05%(ks) t0.1%(ks) t0.2%(ks) t0.5%(ks) T1%(ks)

480 12753 4.31E-09 7.4 1.02 4.27 20.2 175.2 925.8
535 6310 1.41E-08 17.95 0.97 2.41 7.42 50.53 251.46
560 3024 2.94E-08 14.75 0.25 1.08 4.34 29.6 122.51
580∗ 4277 2.09E-08 17.75 0.6 1.72 5.76 38.79 177.89
600 3643 2.81E-08 27.76 0.22 0.79 3.21 21.6 98.75
620 1725 5.61E-08 17.79 0.35 0.76 2.92 14.69 62.37
700 855 1.13E-07 17.24 0.35 0.66 1.3 5.25 20.74
800 255 5.30E-07 20.17 0.1 0.21 0.49 1.69 4.35
900 40 2.20E-06 12.98 0.01 0.04 0.11 0.42 1.22

All the above results were obtained at a temperature of 773 K. τ is the stress level, tF the time to failure in thousands of seconds, ε̇M the minimum
creep rate in strain per second, εF the rupture strain in percent and tx% time to x% strain in thousands of seconds.
∗Properties shown are an arithmetic average of the results obtained from the fifteen specimens placed on test at this condition.

0.0035 Si and Balance ∼82 Ti. The initial heat treat-
ment schedule used was at 1173 K for two hours, fol-
lowing which the material was air quenched. It was then
reheated to 868 K, held for eight hours, and finally air
quenched. A second re-age for two hours at 913 K, in
air, was employed, which is a simulated Post Weld Heat
Treatment.

Twenty-three conventional creep specimens, from
material supplied by TIMET U.K. Ltd., of 3.8 mm dia-
meter, 25.4 mm gauge length and 3/8 inch BSF thread
were machined from the heat treated material and tested
in tension over a range of stresses at 773 K using seven
high precision uniaxial constant-stress machines fitted
with three zone furnaces. All machines had been cal-
ibrated to British Standards BSEN10002 (parts 1–5).
Details of such testing machines can be found in most
texts on creep [7]. Temperature was maintained along
the gauge length and with respect to time to better than
±0.5 K and the extensometers were capable of estab-
lishing creep strains to better than 10−5 and the creep
strain-time curves contained approximately 400 points.

The test matrix used is summarised in Table I. Fifteen
of the twenty three specimens were placed on test at
773 K and a stress of 580 MPa, with the remaining
eight specimens being tested at 773 K and over the
stress range 900 MPa to 480 MPa—excluding 580 MPa.
The creep properties contained in this Table have been
reported (in part) elsewhere [8]. This test matrix was
designed so that the creep property predictions made at
these test conditions correspond to interpolations at the
operating conditions experienced by an Ti 6.2.4.6 alloy
aero engine disk or blade.

3. The θ projection concept: Old and new
3.1. 4� and 6θ models
Any θ projection technique has three basic steps. First,
there is the experimental stage where uniaxial con-
stant stress creep curves are measured over a range of
stresses and temperatures. Second, the form of these
creep curves are modelled in such a way that the form
can be projected to other stresses and temperatures—
either within (i.e. interpolation) or outside (i.e. extrapo-
lation) the original range of test conditions. Finally, the
required creep properties (such as the minimum creep
rate or time to x% strain) are ‘read off’ the projected
creep curves. This ‘reading off’ often requires the ap-
plication of a suitable numerical technique.

A single creep curve at steady uniaxial stress τ and
absolute temperature T can be modelled using a general
functional form

ε = η(t, �1, �2, . . . . , � j , . . . . , �m), (1a)

where η is some non-linear function, ε is the uniaxial
creep strain at time t and � j are numerical parameters
that can be determined from the experimental creep
curves using a suitable estimation technique. For a se-
ries of experimental creep curves obtained under dif-
ferent test conditions, the � j are related to τ and T by
interpolation functions of the form,

� j = g j (τ, T, b j1, b j2, . . . . , b jk, . . . . , b jp), (1b)

where g j are some linear or more likely non linear func-
tions, j is a subscript identifying � in Equation 1a and
b jk are constants that need to be determined using a
suitable estimation technique. Equation 1b permits the
projection of � j to new conditions of stress and tem-
perature and hence the projection of the complete creep
curve to those new conditions.

A variety of different equations have been used to
describe the form of η in Equation 1a [9, 10]. The form
that has been most used over more recent years and has
been shown to give a good representation (at least for
large strains) of an experimental creep curve [11] is

ε = �1(1 − e−�2t ) + �3(e�4t − 1). (2a)

When taken together with the following representation
for the function g j in Equation 1b,

ln(� j ) = b j1 + b j2τ + b j3T + b j4τT, (2b)

the method has yielded excellent predictions of creep
properties for moderate to large strains. Equations 2
corresponds to m = p = 4 and so projections obtained
using Equations 2 will be termed 4� projections.

At small strains, the fit of Equation 2a to the experi-
mental creep curve is very poor and so is misspecified.
This misspecification has lead to considerable errors in
the calculation of times to small strains and to initial and
minimum creep rates in various steel and aluminium al-
loys [12]. A modification to the 4� model has been re-
cently suggested [6] and applied [4, 5, 12]. It includes
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in combination with Equation 2b (with θ j replacing
� j ) an additional term in Equation 1a that is intended
to deal specifically with early primary creep. This 6θ

model (because it involves 6 theta terms) has the form

ε = θ1(1 − e−θ2t ) + θ3(eθ4t − 1) + θ5(1 − e−θ6t ). (3)

Lower case letters are used merely to distinguish
these theta parameters from those in Equation 2a. The
first two terms on the right hand side have the same
physical meaning as in Equation 2a; the first term de-
scribes normal primary creep and the second term nor-
mal tertiary creep. The third term is new and describes
early primary behaviour. For some materials [5, 12] the
fit to the experimental data is dramatically improved.

3.2. Estimation of and prediction from 4�
and 6θ models

For both Equations 2a and 3, � j and θ j can be estimated
from the experimental creep curves, obtained at the test
conditions described in Section 2 above, by a non linear
least squares procedure described elsewhere [11]. This
procedure adjusts the estimates of � or θ , and more es-
pecially their standard errors, for 1st order autocorrela-
tion in the scatter about the fitted curve. This procedure
was implemented within a spreadsheet environment by
making use of Excels Solver Function. This uses the
Conjugate Gradient optimisation technique. Values of
the constants in Equation 2b were determined from the
estimated � j or θ j values using an unweighted linear
least squares procedure. (This was again achieved in
Excel’s using its Linest Function).

The procedure used for estimating the time required
for a particular strain is similar regardless of whether the
4� or 6θ model is used. At any arbitrary stress and tem-
perature, � j and/or θ j are calculated from Equation 2b.
The time, tx%, required to attain a strain of εx% is the nu-
merical solution (using Newton – Ralphson methods)
to the equation

0 = �1(1 − e−�2t ) + �3(e�4t − 1) − εx%

100
(4a)

for the 4� model or,

0 = θ1(1−e−θ2t ) + θ3(e−θ4t − 1) + θ5(1 − e−θ6t )−εx%

100
(4b)

for the 6θ model. Replacing εx%/100 with the rupture
strain εF in Equations 4 and solving will give a pre-
diction of the failure time, tF . This approach to failure
time prediction involves modelling the rupture strain
using stress and temperature as explanatory variables
through the following equation

εF = a1 + a2τ + a3T + a4τT . (4c)

Unfortunately, εF is not strongly dependant on stress
or temperature. Instead it seems to vary randomly and
substantially over various test conditions. Whilst this
tends to lead to errors in failure time predictions it
should be noted that this transmitted error is minimised

by the fact that the creep curve is at its steepest around
the time to failure.

An alternative approach to predicting the time to fail-
ure involves first predicting the minimum creep rate,
ε̇M . A prediction of the minimum creep rate using the
4� model can be found from

tM = 1

�2 + �4
ln

�1�
2
2

�3�
2
4

, (5a)

ε̇M = −�1�2e−�2tM + �3�4e�4tM . (5b)

where tM is time to minimum creep rate.
The minimum creep rate can also be predicted using

the 6θ model by solving the following equation numer-
ically

θ1θ
2
2

θ3θ
2
4

et[−θ2−θ4] + θ5θ
2
6

θ3θ
2
4

et[−θ6−θ4] − 1 = 0. (5c)

Once a minimum creep rate has been predicted it
can be used to predict the time to failure by making
use of the Monkman–Grant [13] relation that stipulates
that the time to failure is inversely proportional to the
minimum creep rate,

tF = α

ε
β

M

, (6)

where α and β are constants that can be estimated from
the test matrix data set using a least squares procedure.

3.3. Evaluating the accuracy of creep
property predictions obtained from 4θ
and 6θ models

It is sensible to analyse the difference between interpo-
lated and experimental results in terms of the logarithms
of the creep property being studied. If the experimental
creep property (such as time to x% strain) is κe and the
interpolated (i.e. predicted) property κp then

ln(κe) = ln(κp) + υ, (7a)

where υ was a random variable which can be estimated
from the observed creep properties. The relevant pre-
diction error is thus defined as

υ = ln(κe) − ln(κp). (7b)

When defined in this way, υ (for small υ) is equal
to a proportionate prediction error, i.e. the error in pre-
dicting a creep property as a proportion of the actual
creep property. As such it is reasonable to assume that υ
will be independent of the numeric value for the creep
property being predicted. υ will however contain sev-
eral types of error. Some types will be due to statistical
scatter in the creep measuring process and these errors
are likely to have a population mean of zero. Others
will be due to a possible mis specification of the creep
curve model and or interpolation function and these are
likely to have a population mean that is different from
zero.
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In a large sample, testing for such a mis specification
(i.e. zero mean prediction errors) would be straightfor-
ward. The central limit theorem would ensure that a
student t statistic test for a zero mean would be nor-
mally distributed, and so critical values could be ob-
tained from a student t table. However, in this paper
there are just twenty three prediction errors that can be
calculated for a given creep property and so a different
approach must be sought. In this paper a generalised
three parameter log gamma distribution will be used to
model the prediction errors, υ, as defined above.

The three parameter log gamma distribution takes the
following form [14],

f (υi ) = |λ|
σ�(λ−2)

(λ−2)λ−2exp
[
λ−2(λwi− exp(λwi )

]
,

(8a)

where υi is the i th value for a creep property prediction
error, f (υi ) is the density function for υ, µ a location
parameter, σ a scale parameter, λ a shape parameter
and wi the transformation (υi − µ)/σ .

When λ = 0, υi follows a normal distribution with a
mean equal to µ and a variance equal to σ 2. (exp(υi )
is therefore log normally distributed). When λ = 1,
υi follows an extreme value distribution with a mean
equal to µ − 0.5772σ and a variance equal to (π2σ 2)/6.
(exp(υi ) is therefore Weibull distributed). The exponen-
tial and gamma distributions are also special cases of
this generalised distribution. For any other value of λ,
υi follows a three parameter gamma distribution with
a mean equal to

Mean (υ) = µ + σλ−1[ψ(λ−2) − ln(λ−2)], (8b)

and a variance equal to

Variance (υ) = σ 2λ−2ψ ′(λ−2). (8c)

ψ(λ−2) and ψ ′(λ−2) are the digamma and trigamma
functions respectively and their value depends only on
λ. (See Lawless [15] for a formal definition of these
functions). This implies that [ψ(λ−2) − ln(λ−2)] =
−0.5772 and ψ ′(λ−2) = π2/6 when λ = 1 and
that [ψ(λ−2) − ln(λ−2)] = 0 and λ−2ψ ′(λ−2) = 1 when
λ = 0.

The advantage of using this distribution is there-
fore that it encompasses as special cases a variety of
well known distributions including, the Exponential,
Weibull, Log Normal and Gamma distributions (for
exp(υ)). As such a particular type of distribution is not
forced upon the data. Rather the data can be used to de-
termine which of all these distributions best describes
the frequency with which various prediction errors υi

will be observed using a particular projection technique
(4� or 6θ ).

The best fitting distribution is defined in terms of
the likelihood function, L(µ, σ , λ), which measures
the joint probability of observing each and every υi

value. That is, the distribution that best describes the
prediction errors is the one with the largest value for
L(µ, σ , λ). This will correspond to a particular value

for λ so that L(µ, σ , λ) will be a function of λ. It
is often simpler to work with the log likelihood func-
tion, so that the distribution that best describes the pre-
diction errors is the one with the largest value for ln
L(µ, σ , λ). From Equation 8a

ln L(µ, σ, λ) = N [ln |λ| − ln �(λ−2) − ln(σ )

+ λ−2 ln(λ−2)] +
N∑

i=1

λ−2(wi − exp(λw1), (9a)

where there are N observations on the prediction error
υ and thus the transformation w of a particular creep
property.

Values forµ,σ andλ are therefore those values which
result in ln L(µ, σ , λ) being maximised. These maxi-
mum likelihood estimates are asymptotically efficient
and the distributions for µ, σ and λ are also asymptoti-
cally normal so that student t tests for statistical signif-
icance can be applied to these estimates. Moreover, be-
cause all the distributions contained within Equation 8a
come from the exponential family, if unbiased mini-
mum variance estimators exist, these maximum like-
lihood estimates will be them [16]. Numerical opti-
misation procedures for maximising Equation 9a are
described elsewhere [17] and for this paper they were
implemented within Excel using its Solver Function.

Once values for µ, σ and λ are obtained in the way de-
scribed above, they can be substituted into Equation 8b
to obtain an estimate of the mean prediction error. A
95% confidence interval for this mean is then found by
realising that the square of the ratio of two likelihood
functions is asymptotically chi square distributed. Now
Equation 9a can be maximised subject to the constraint
that the mean error takes on some particular value, say
υ∗. If ln L(µ, σ , λ, υ∗) is such a constrained maximised
log likelihood and ln L(µ, σ , λ) the unconstrained max-
imised log likelihood, then a 95% confidence interval
for the mean prediction error is made up of all those
values for υ∗ that result in

� = −2(ln L(µ, σ, λ, υ∗) − ln L(µ, σ, λ)) (9b)

being less than 5.02, where 5.02 is the 0.975 percentile
of the chi square distribution with one degree of free-
dom (as there is only one constraint in the constrained
maximised log likelihood function).

Similarly, a likelihood ratio statistic to test for a zero
mean prediction error can be formed by maximising
Equation 9b subject to the constraint that υ∗ = 0. If
ln L(µ, σ , λ, υ∗ = 0) is such a constrained maximised
log likelihood and ln L(µ, σ , λ) the unconstrained max-
imised log likelihood then a chi square statistic to test
for a zero mean is given by

�υ=0 = −2(ln L(µ, σ, λ, υ∗ = 0) − ln L(µ, σ, λ)).
(9c)

�υ = 0 is asymptotically chi square distributed with one
degree of freedom. As such a value for �υ = 0 in ex-
cess of 5.02 implies (with 95% certainty) that the mean
perdiction error is different from zero, i.e. that a biased
prediction has been made.
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4. Results
Normal creep curves (curves displaying similar periods
of primary and tertiary creep with no inverse primary
behaviour) were observed under all the tests carried out.
In all cases the 6θ model gave a better fit to the experi-
mental curves than the 4� model. Fig. 1 shows a typical
example using the experimental data obtained at 773 K
and 620 MPa. In Fig. 1a the first 100000 seconds of test-
ing are shown covering early strain up to 1.2%. Over
this part of the creep curve the 6θ model fits the exper-
imental data much better than the 4� model. Indeed,
the predictions only start to deviate systematically from
the experimental data for strains below about 0.35%.

(a)

(b)

Figure 1 (a) Comparison between actual and predicted creep strains over the first 100000 seconds of testing using the 4� and 6θ models at 620
MPa and 773 K. (b) Comparison between actual and predicted creep strains over the last 1600000 seconds of testing using the 4� and 6θ models at
620 MPa and 773 K.

Fig. 1b shows that for the remaining part of the creep
curve both models give very similar degrees of fit to the
experimental data. It can therefore be expected that the
6θ model will give similar failure time predictions to
those obtained from the 4� model.

The interpolation function given by Equation 2b
(with b j3 = b j4 = 0 due to the use of a single tempera-
ture) related the experimental rate parameter values �2
and �4 to stress very well using the parameter values
shown in the first half of Table II. The R2 values of
70.67% and 89.87% respectively confirm that a large
percentage of the variation in these theta vales can be
explained by variations in stress. Fig. 2a and b give a
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T ABL E I I Interpolation coefficients in Equation 2b for the 4� and 6θ models for Titanium alloy Ti-6.2.4.6 at 773 K

4� 6θ

b j1 b j2 R2 (%) b j1 b j2 R2 (%)

�1 (θ1) −5.9798 0.00237 58.90 −5.0776 0.00176 2.51
�2 (θ2) −17.0439 0.00992 70.67 −21.4866 0.01362 53.32
�3 (θ3) −4.8228 0.00326 38.74 −5.1833 0.00225 5.14
�4 (θ4) −21.6740 0.01147 89.87 −21.8947 0.01258 89.46
(θ5) — — — −5.8677 0.00103 9.95
(θ6) — — — −15.6153 0.01008 71.93

R2 is the coefficient of determination measuring the percentage variation in � j or θ j explained by variations in stress. b j are the coefficients in
Equation 2b where b j3 = b j4 = 0 as all the above results were obtained at the single temperature of 773 K.

(a)

(b)

Figure 2 (a) The variation of �4, θ4 and θ6 with stress at 773 K for Ti 6.2.4.6. (b) The variation of �2 and θ2 with stress at 773 K for Ti 6.2.4.6.
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visual impression of this goodness of fit where much of
the unexplained variation is clearly attributable to the
fifteen repeat tests at 580 MPa. As expected the fit of
Equation 2b to the strain like quantities �1 and �3 is
not so good with the R2 values shown in Table II being
58.9% and 38.74% respectively. (See Fig. 3a and b for
a visual impression of this poorer fit).

It was not initially clear whether the same interpola-
tion function would be appropriate for the parameters
derived from the 6θ model. Fig. 2a and b and the sec-
ond half of Table II show the fit of Equation 2b to the
data θ2, θ4 and θ6 and it is clear that these fits are com-
parable to those obtained for the rate parameters in the
4θ model. Indeed, the best fit lines for θ4 and �4 are

T ABL E I I I Statistical distributions and analysis of errors in interpolation of important creep properties

Creep Property Model µ σ λ ln L(µ, σ , λ) Mean error, υ �υ = 0

t0.05% 4� −1.826 0.686 0.4 −24.583 −1.9669 55.29∗
[−12.59] [5.74]

6θ −1.005 0.646 0.5 −23.540 −1.1734 37.45∗
[−7.31] [5.65]

t0.1% 4� −1.534 0.485 0.1 −16.013 −1.5582 57.11∗
[−15.17] [5.87]

6θ −0.741 0.457 0.2 −14.750 −0.7873 33.54∗
[−7.76] [5.84]

t0.2% 4� −1.024 0.393 0.3 −11.479 −1.0842 52.85∗
[−12.42] [5.80]

6θ −0.327 0.385 0.2 −10.830 −0.3656 15.66∗
[−4.06] [5.84]

t0.27% 4� −0.822 0.378 0.2 −10.396 −0.8604 44.07∗
[−10.41] [5.84]

6θ −0.167 0.377 0.1 −10.260 −0.1863 5.13
[−2.13] [5.87]

t0.35% 4� −0.610 0.386 0.2 −10.910 −0.6489 32.59∗
[−7.55] [5.84]

6θ −0.026 0.392 0.05 −11.127 −0.0362 0.19
[−0.32] [5.87]

t0.5% 4� −0.301 0.398 0.05 −11.468 −0.3107 11.11∗
[−3.62] [5.87]

6θ 0.141 0.398 0.01 −11.419 0.1390 2.65
[1.71] [5.87]

t0.75% 4� −0.053 0.397 −0.3 −11.728 0.0078 0.01
[−0.63] [5.79]

6θ 0.038 0.384 0.1 −10.633 0.0186 0.054
[0.47] [5.86]

t1.0% 4� 0.053 0.363 −0.5 −10.301 0.1478 3.55
[0.69] [5.64]

6θ −0.046 0.365 0.1 −9.479 −0.0641 0.703
[−0.61] [5.86]

ε̇M 4� 0.114 0.291 −0.1 −4.276 0.1284 4.18
[1.87] [5.86]

6θ 0.014 0.290 −0.01 −4.157 0.0157 0.068
[0.24] [5.87]

tF (using rupture strain) 4� −0.139 0.212 0.3 2.705 −0.1719 12.48∗
[−3.13] [5.82]

6θ −0.124 0.214 0.3 2.472 −0.1564 10.51∗
[−2.75] [5.82]

tF (using Monkman–Grant) 4� −0.085 0.216 0.3 2.327 −0.1174 6.28∗
[−1.87] [5.82]

6θ 0.018 0.216 0.3 2.259 −0.0144 0.099
[0.41] [5.81]

tx% is time to x% strain, tF is time to failure, ε̇M is the minimum creep rate, µ is the location parameter in Equation 8a, σ is the scale parameter in
Equation 8a, λ is the shape parameter in Equation 8a, υ is the prediction error as defined by Equation 7b, ln L(µ, σ, λ) is the maximised log likelihood
value as given by Equation 9a and �υ = 0 is the chi square test shown in Equation 9c for a zero mean prediction error.
Student t statistics for the null hypothesis µ = 0 and σ = 0 are shown in parenthesis.
∗Significant at the 5% significance level implying, with 95% certainty, that the mean prediction error is biased, i.e. non zero.

very similar in terms of both the slope of the best fit line
and the R2 value. The R2 value for θ6 is comparable to
that on �2 and the R2 value for θ2 is in excess of 50%.
Again the fit of Equation 2b to the strain like quantities
θ1, θ3 and θ5 is not so good as that obtained for the rate
parameters—see Fig. 3a and b.

Table III shows that for most of the creep properties
studied the prediction errors followed a three parame-
ter log gamma distribution with λ somewhere between
0.1 and 0.5. This implies that the prediction error dis-
tribution is skewed to the left. The exceptions to this
finding are the prediction error for the minimum creep
rate (to be expected given the inverse relationship be-
tween failure times and minimum creep rates) and times
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(a)

(b)

Figure 3 (a) The variation of �3, θ3 and θ5 with stress at 773 K for Ti 6.2.4.6. (b) The variation of �1 and θ1 with stress at 773 K for Ti 6.2.4.6.

to relatively high strains using the 4θ model. In these
fewer cases λ is always negative implying a skew to
the right. Whilst the 95% confidence intervals (as de-
fined using Equation 9b) for λ for all the creep proper-
ties contained the log normal and Weibull distributions
these are clearly not the distributions most supported
by the data. (More details of these confidence intervals
are available from the author on request).

Given the non normal nature of most of the creep
property prediction errors the standard student t test
for the null hypothesis that the population mean pre-
diction error is zero is invalid. Instead the chi square

test defined in Equation 9c (using the distribution most
supported by the data in Table III) was used to test this
null hypothesis. Results are shown in the last column
of Table III and in Fig. 4.

Taking first the predictions of time to x% strain. Us-
ing the 4� model the null hypothesis was accepted
down to a strain of 0.75%. For lower strains the mean
prediction error was biased, i.e. significantly different
from zero at the 5% significance level. This shows up
in Fig. 4a where the 95% confidence intervals do not
cross over the zero mean axis below 0.75%. However,
when using the 6θ model the null hypothesis could be
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(b)

Figure 4 (a) The variation in the mean prediction error for time to x% strain with x% strain for the 4� and 6θ models together with a 95% confidence
interval for such mean error predictions. (b) Mean prediction error for time to failure and the minimum creep rate using the 4� and 6θ models together
with a 95% confidence interval for such mean error predictions.

accepted down to 0.27% strain—a substantial improve-
ment over the 4� model. Whilst for lower strains than
this the 6θ model produced biased predictions, Fig. 4a
clearly shows that no matter what strain is selected be-
low 0.5% the 6θ model will always produced a predic-
tion that is significantly better than that derived from
the 4� model. This is shown by the fact that the con-
fidence intervals in Fig. 4a below 0.5% strain do not
overlap each other.

Finally, consider the predictions of time to failure
shown at the bottom of Table III and in Fig. 4b. When
the 4� and 6θ models are used in conjunction with
a prediction of rupture strain, they yield very similar

mean prediction errors for time to failure. Both produce
a mean error that is significantly different from zero.
However, the 6θ model produces a much better predic-
tion of the minimum creep rate using Equation 5c than
the 4�model does using Equation 5b. When these creep
rate predictions are inserted into the following estimate
of the Monkman–Grant relation

tF = 0.387

ε0.914
M

,

the 6θ model unsurprisingly produces superior time to
failure predictions. Whilst the 4� model in conjunction
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with the Monkman–Grant relation produces a mean
failure time prediction error that is significantly differ-
ent from zero, the 6θ model with the Monkman–Grant
relation produces a zero mean error. This suggests that
when using a 6θ model it may be better to incorpo-
rate the Monkman–Grant relation into the model when
using it to predict a time to failure.

5. Conclusions
A number of conclusions can be drawn from the results
shown above. First, the shape of a 6θ creep curve better
fits the experimental data for Ti.6.2.4.6 than the shape
of a 4� creep curve. Second, the errors in the interpo-
lated times to small strains from either model are not
best described using a normal or Weibull distribution
although neither distribution can be completely rejected
by the data. Third, for strains below 0.27% both the 4�

and 6θ models produce mean values of the errors in
interpolation that are not zero. For strains above 0.27%
the 6θ model produces mean values of the errors in
interpolation that are zero. Using the 4� model zero
mean interpolation errors do not happen until strains in
excess of 0.5% are reached. Fourth, the 6θ model pro-
duces zero mean interpolation errors for the minimum
creep rate whilst the 4� model does not. So when used
in combination with the Monkman–Grant relation the
6θ model produces a zero mean interpolation error for
the time to failure—the 4� model does not.
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